Semi-supervised Learning with Support Isolation by Small-Paced Self-Training

نویسندگان

چکیده

In this paper, we address a special scenario of semi-supervised learning, where the label missing is caused by preceding filtering mechanism, i.e., an instance can enter subsequent process in which its revealed if and only it passes mechanism. The rejected instances are prohibited to labeling due economical or ethical reasons, making support labeled unlabeled distributions isolated from each other. case, learning approaches rely on certain coherence distribution would suffer consequent mismatch, hence result poor prediction performance. propose Small-Paced Self-Training framework, iteratively discovers subspaces with bounded Wasserstein distance. We theoretically prove that such framework may achieve provably low error pseudo labels during learning. Experiments both benchmark pneumonia diagnosis tasks show our method effective.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Training SpamAssassin with Active Semi-supervised Learning

Most spam filters include some automatic pattern classifiers based on machine learning and pattern recognition techniques. Such classifiers often require a large training set of labeled emails to attain a good discriminant capability between spam and legitimate emails. In addition, they must be frequently updated because of the changes introduced by spammers to their emails to evade spam filter...

متن کامل

Semi - supervised Learning in Support Vector Machines

In traditional supervised classification, classifiers are trained using feature/label pairs and the classifier performance is measured on unseen test data. In the current Internet age, as the amount of data produced grows exponentially, we would like to use as much of this data as possible to train classifiers in order to get better performance. This is especially true in models such as neural ...

متن کامل

Self Paced Deep Learning for Weakly Supervised Object Detection

In a weakly-supervised scenario, object detectors need to be trained using image-level annotation only. Since bounding-box-level ground truth is not available, mostof the solutions proposed so far are based on an iterative approach in which theclassifier, obtained in the previous iteration, is used to predict the objects’ positionswhich are used for training in the current itera...

متن کامل

Self-Paced Co-training

Notation and Definition: We assume that examples are drawn from some distributions D over an instance space X = X1 × X2, where X1 and X2 correspond to two different “views” of examples. Let c denote the target function, and let X and X− (for simplicity we assume we are doing binary classification) denote the positive and negative regions of X , respectively . For i ∈ 1, 2, let X i = {xj ∈ Xi : ...

متن کامل

Self-Paced Learning with Diversity

Self-paced learning (SPL) is a recently proposed learning regime inspired by the learning process of humans and animals that gradually incorporates easy to more complex samples into training. Existing methods are limited in that they ignore an important aspect in learning: diversity. To incorporate this information, we propose an approach called self-paced learning with diversity (SPLD) which f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the ... AAAI Conference on Artificial Intelligence

سال: 2023

ISSN: ['2159-5399', '2374-3468']

DOI: https://doi.org/10.1609/aaai.v37i9.26249